DBT desulfurization by decorating Rhodococcus erythropolis IGTS8 using magnetic Fe3 O4 nanoparticles in a bioreactor
نویسندگان
چکیده
منابع مشابه
DBT degradation enhancement by decorating Rhodococcus erythropolis IGST8 with magnetic Fe3O4 nanoparticles.
Biodesulfurization (BDS) of dibenzothiophene (DBT) was carried out by Rhodococcus erythropolis IGST8 decorated with magnetic Fe3O4 nanoparticles, synthesized in-house by a chemical method, with an average size of 45-50 nm, in order to facilitate the post-reaction separation of the bacteria from the reaction mixture. Scanning electron microscopy (SEM) showed that the magnetic nanoparticles subst...
متن کاملCharacterization of the desulfurization genes from Rhodococcus sp. strain IGTS8.
Rhodococcus sp. strain IGTS8 possesses an enzymatic pathway that can remove covalently bound sulfur from dibenzothiophene (DBT) without breaking carbon-carbon bonds. The DNA sequence of a 4.0-kb BstBI-BsiWI fragment that carries the genes for this pathway was determined. Frameshift and deletion mutations established that three open reading frames were required for DBT desulfurization, and the g...
متن کاملImprovement of Desulfurization Performance of Rhodococcus erythropolis IGTS8 by Assembling Spherical Mesoporous Silica Nanosorbents on the Surface of the Bacterial Cells
MCM-41 mesoporous silica is synthesized based on a self assembly method, using a quaternary ammonium template, CTAB for the adsorption of sulfur compounds from model oil (1.0 mmol/l DBT in dodecane solution). Then the adsorption capability of MCM-41 assembled on the surface of bacterium Rhodococcus erythropolis IGTS8 is examined regarding the improvement of the biodesulfurization process of...
متن کاملRate-limiting step analysis of the microbial desulfurization of dibenzothiophene in a model oil system.
A mechanistic analysis of the various mass transport and kinetic steps in the microbial desulfurization of dibenzothiophene (DBT) by Rhodococcus erythropolis IGTS8 in a model biphasic (oil-water), small-scale system was performed. The biocatalyst was distributed into three populations, free cells in the aqueous phase, cell aggregates and oil-adhered cells, and the fraction of cells in each popu...
متن کاملInvestigation of Desulfurization Activity, Reusability, and Viability of Magnetite Coated Bacterial Cells
Background: Magnetic separation using magnetic nanoparticles can be used as a simple method to isolate desulfurizing bacteria from a biphasic oil/water system. Objectives: Magnetite nanoparticles were applied to coat the surface of Rhodococcus erythropolis IGTS8 and Rhodococcus erythropolis FMF desulfurizing bacterial cells, and the viability and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Engineering in Life Sciences
سال: 2016
ISSN: 1618-0240
DOI: 10.1002/elsc.201600080